Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function.

نویسندگان

  • W Cong
  • H Shen
  • A Cong
  • Y Wang
  • G Wang
چکیده

Photon propagation in biological tissue is commonly described by the radiative transfer equation, while the phase function in the equation represents the scattering characteristics of the medium and has significant influence on the precision of solution and the efficiency of computation. In this work, we present a generalized Delta-Eddington phase function to simplify the radiative transfer equation to an integral equation with respect to photon fluence rate. Comparing to the popular diffusion approximation model, the solution of the integral equation is highly accurate to model photon propagation in the biological tissue over a broad range of optical parameters. This methodology is validated by Monte Carlo simulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flux vector formulation for photon propagation in the biological tissue.

We present a generalized delta-Eddington phase function to simplify the radiative transfer equation to an integral equation with respect to the photon flux vector. The solution of the integral equation is highly accurate to model the photon propagation in the biological tissue over a broad range of optical parameters, especially in the visible light spectrum where the diffusion approximation br...

متن کامل

Radiative transfer with delta-Eddington-type phase functions

The radiative transfer equation (RTE) arises in a wide variety of applications, in particular, in biomedical imaging applications associated with the propagation of light through the biological tissue. However, highly forward-peaked scattering feature in a biological medium makes it very challenging to numerically solve the RTE problem accurately. One idea to overcome the difficulty associated ...

متن کامل

The Study of Variation of Photon Intensity Inside Biological Phantom by Green Theorem

The Image reconstruction is an important problem in optical tomography. The process of the image processing requires the study of photon migration in biological tissue. There are several approaches to study and simulate propagation of photons in biological tissues. These approaches are categorized into stochastic and analytical groups. The Monte Carlo method as a stochastic method is widely use...

متن کامل

Modeling Time Resolved Light Propagation Inside a Realistic Human Head Model

Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...

متن کامل

Influence of phase function on modeled optical response of nanoparticle-labeled epithelial tissues.

Metal nanoparticles can be functionalized with biomolecules to selectively localize in precancerous tissues and can act as optical contrast enhancers for reflectance-based diagnosis of epithelial precancer. We carry out Monte Carlo (MC) simulations to analyze photon propagation through nanoparticle-labeled tissues and to reveal the importance of using a proper form of phase function for modelin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 76 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2007